Bibliografia

Química de suelos con énfasis en suelos de América Latina
Hans W. Fassbender, Elemer Bornemisza, Inter-American Institute for Cooperation on Agriculture
Edition: 2, illustrated
Publicado por IICA, 1987
ISBN 9290391243, 9789290391241
420 páginas


El suelo: Su uso y mejoramiento
Escrito por J. H. Stallings, Celedonio Sevillano Mayo
Publicado por Compañía Editorial Continental, 1962
480 páginas




¿A qué se debe la acidez del suelo? ¿Qué importancia tiene conocer la acidez del suelo?


Una situación muy común en huertos y jardines es la disparidad en el desarrollo de algunas especies, que presentan muy diferentes resultados de producción y desarrollo. Las causas son muy variadas. Entre ellas, una de las más decisivas es el nivel de acidez del suelo o "pH", factor de suma importancia cuando se trata de cultivos comerciales. Para adoptar resoluciones al respecto, es preciso comenzar con un análisis del suelo, y si dicho nivel es distinto del que la especie a producir necesita, es imperativo practicar una enmienda orientada a corregir el problema específico.

El control de esta reacción es fundamental, puesto que el pH influye directamente en la solubilidad y asimilación de los elementos que nutren a las plantas. Si la acidez del suelo es mucha -un pH inferior a 5,6-, el fósforo se combina con compuestos de aluminio y fierro, formando otros que no son asimilables por las plantas.
En cambio la otra situación extrema, de una reacción alcalina con un pH 8,0 o más, implica que la absorción disminuye igualmente, debido a que se forman compuestos de fosfatos tricálcicos que difícilmente pueden asimilar las plantas. El nivel de mejor asimilación está en el pH neutro; es decir, alrededor de 7,0 (entre 6,5 y 7,5).
Otros nutrientes que también son sensibles a la reacción del suelo son los elementos menores, como el fierro, manganeso y zinc, que pueden ser bien aprovechados con un pH alto.

Suelos alcalinos

Así como el calcio es elemento principal de las enmiendas destinadas a disminuir la acidez de los suelos, el azufre es de importancia fundamental para la corrección de la alcalinidad.

Las principales enmiendas para suelos alcalinos son el azufre, el sulfato de aluminio y el yeso o sulfato de calcio. Al igual que en otros tipos de enmienda, el tipo y la cantidad se determinan a través de un análisis y la correspondiente asesoría técnica, para que la corrección se realice en forma precisa y oportuna.

El empleo de este tipo de productos es mucho menos usual que la utilización de enmiendas calcáreas, debido a que los suelos alcalinos son poco comunes y a que algunos de los materiales acidificantes tienen mayor costo que las cales. Por fortuna, una vez que se tía completado el proceso de corregir el suelo, a veces por etapas, la solución es duradera, a menos que se use la tierra en cultivos que paulatinamente lo desestabilicen.


Legorreta Sanchez Arely Malinaly

¿Cómo mejorar un suelo deficiente en sales?¿Cómo se obtienen las sales?


Para mejorar un suelo deficiente de sales se le deben agregar sales y estas se obtienen por diferentes metodos:

  • Metal + No metal ® Sal
  • Metal + Ácido ® Sal + Hidrógeno
  • Sal 1 + Sal 2 ® Sal 3 + Sal 4
  • Ácido + Base ® Sal + Agua


  • MÉTODO LE BLANC:

1- A partir de Cloruro de Sodio y Ácido Sulfúrico se obtienen Sulfato de Sodio y Cloruro de Hidrógeno.

2 NaCl + H2SO4 ® Na2SO4 + 2 HCl ­

2- El Sulfato de Sodio se reduce con coque y se calcina con caliza, así se obtiene Carbonato de Sodio, Sulfuro de Calcio y Dióxido de Carbono.

Na2SO4 + CaCO3 + 2 C ® Na2CO3 + CaS + 2 CO2­

3- Por extracción con agua pueden separarse el Carbonato de Sodio (soluble) y el Sulfuro de Calcio (insoluble).

4- El Carbonato de Sodio puede tratarse con cal apagada para obtener una solución de Hidróxido de Sodio.

Na2CO3 + Ca(OH )2® CaCO3 ¯ + 2 NaOH

Al pasar al método de Solvay fue preciso obtener Cloro a partir de otras fuentes de Ácido Clorhídrico, sin que se alterase el cuadro en lo que se refiere a la sosa cáustica.


  • MÉTODO SOLVAY:

1- Haciendo pasar Amoníaco y Dióxido de Carbono (gaseosos) por una solución saturada de Coluro de Sodio se forma Carbonato ácido de Sodio y Cloruro de Amonio (ambos insolubles).

NaCl + NH3 + CO2 + H2O ® NaHCO3 + NH4Cl

2- El Carbonato ácido de Sodio se separa de la solución por filtración y se transforma en Carbonato de Sodio por calcinación:

2 NaHCO3 ® Na2CO3 + H2O + CO2­

3- El Cloruro de Amonio obtenido se hace reaccionar con Hidróxido de Calcio y se recupera Amoníaco.

2 NH4Cl + Ca(OH)2 ® 2 NH3­ + 2 H2O + CaCl2

4- El Hidróxido de Calcio se produce en la misma fábrica por calcinación de Carbonato de Calcio (piedra caliza) y así se produce el Dióxido de Carbona necesario en la ecuación 1.

CaCO3 ® CaO + CO2­

En 1888 se descubrió el método del diafragma y se realizó la primera electrólisis técnica Cloro- álcali. El método de Griesheim se extendió triunfalmente por todo el mundo y fue piedra fundamental para nuevos desarrollos técnicos de procesos electroquímicos (obtención de Aluminio, Magnesio, Sodio, etc.).

Desde entonces, Cloro y sosa cáustica están íntimamente unidos, y el aumento en consumo de uno de ellos se traduce en exceso de producción del otro. Por ejemplo, cuando después de la primera guerra mundial, aumentó abruptamente el consumo de sosa cáustica para la industria de la seda artificial, el empleo del Cloro producido resultó un problema insoluble e hizo necesario la búsqueda de nuevos campos de aplicación para el Cloro. Esta búsqueda fue coronada con tal éxito que, desde hace unos treinta años, la situación ha cambiado por completo y el ulterior desarrollo de la electrólisis Cloro-álcalis está hoy subordinado a las necesidades de Cloro.

  • ELECTRÓLISIS EN FASE FUNDIDA POR EL MÉTODO DE DOW:

En la célula , revestida con ladrillos de chamota, (1) el ánodo de grafito (A) penetra por la parte inferior, mientras el cátodo de hierro (B) rodea al ánodo anularmente.

El espacio catódico está separado por ambos lados del resto de la célula mediante una tela metálica.

Sobre el ánodo hay una campana (C), que capta el Cloro gaseoso, depositado en el ánodo (A) para que no se ponga en contacto con el Sodio fundido. Así se puede obtener separadamente Sodio fundido y Cloro gaseoso. El Sodio flota sobre el Cloruro de Sodio fundido, sobre el cátodo (B), de dónde se extrae y se pasa a un depósito colector (D).

La producción del fundido tiene lugar en el depósito superior (E), por encima de la campana, dónde se va cargando continuamente Cloruro de Sodio sólido.

2 NaCl ® 2 Na + Cl2­

  • MÉTODO DEL DIAFRAGMA:

La célula horizontal en el método del diafragma, la célula Billiter (2) está separada por el diafragma (A) , que frecuentemente es formado por varias capas de asbesto, en un espacio anódico (B) y otro espacio catódico (C). También aquí se emplean como ánodos electrodos de grafito y como cátodo parrillas de Hierro. El electrolito es una solución purificada y saturada de Cloruro de Sodio (3) que entra continuamente por la parte superior.

Mediante la aplicación de una corriente contínua de unos cuatro voltios los iones Cloruro van al ánodo, se descargan, se unen para dar moléculas y abandonan en forma de gas el espacio anódico por (F). De los iones Na+ y H+ presentes en el cátodo se descargan solamente los últimos por su potencial de separación más positivo. El Hidrógeno se recoge por debajo del diafragma y se extrae por (D). En el espacio catódico queda una solución de lejía de sosa que contiene Cloruro de Sodio; unos 120 g de Hidróxido de Sodio y unos 140 g de Cloruro de Sodio. La disolución se extrae por (E). Unas 50 a 100 células se unen para constituir una batería.

2 NaCl + 2 H2O ® 2 NaOH + Cl2­ + H2­

  • MÉTODO DE LA AMALGAMA:

En la célula, algo inclinada hacia un lado (4), el ánodo consta también de varios electrodos de grafito (A) mientras el cátodo lo constituye el Mercurio (B) que cubre el suelo y que fluye en él lentamente. La célula no tiene diafragma. El electrolito es también aquí una solución purificada y saturada de Cloruro de Sodio que entra continuamente por (C). Se trabaja con corriente contínua con 4,6 voltios y el Cloro formado en el ánodo sale en forma gaseosa (D). Los iones Sodio se descargan en el cátodo de Mercurio y rápidamente forman con él la amalgama de Sodio que fluye fuera de la célula con un contenido en Sodio de alrededor de 0,2 % (E). Por medio de una bomba (F) se hace pasar la amalgama a un depósito (G), una torre rellena con grafito en la que se produce la descomposición de la amalgama con agua, con producción de Mercurio, lejía de sosa (H) e Hidrógeno (I). El Mercurio puro se recoge en el fondo de la torre y se bombea (J) de nuevo a la célula de electrólisis.

2 Na + Hg2 + 2 H2O ® 2 NaOH + Hg2 + H2­




Legorreta Sanchez Arely Malinaly

¿Cual es el elemento de las plantas?



La fotosíntesis es uno de los procesos metabólicos de los que se valen las células para obtener energía.



Es un proceso complejo, mediante el cual los seres vivos poseedores de clorofila y otros pigmentos, captan energía lumn ellos transforman el agua y el CO2 en compuestos orgánicos reducidos (glucosa y otros), liberando oxígeno:

Luz

6 CO2 + 6 H2O C6H12O6 + 6O2

Clorofila


La energía captada en la fotosíntesis y el poder reductor adquirido en el proceso, hacen posible la reducción y la asimilación de los bioelementos necesarios, como nitrógeno y azufre, además de carbono, para formar materia viva.


La radiación luminosa llega a la tierra en forma de “pequeños paquetes", conocidos como cuantos o fotones. Los seres fotosintéticos captan la luz mediante diversos pigmentos fotosensibles, entre los que destacan por su abundancia las clorofilas y carotenos.


Al absorber los pigmentos la luz, electrones de sus moléculas adquieren niveles energéticos superiores, cuando vuelven a su nivel inicial liberan la energía que sirve para activar una reacción química: una molécula de pigmento se oxida al perder un electrón que es recogido por otra sustancia, que se reduce. Así la clorofila puede transformar la energía luminosa en energía química.


En la fotosíntesis se diferencian dos etapas:


Fase luminosa:

En tilacoide en ella se producen transferencias de electrones. Se caracterizan por los sig. Puntos

Síntesis de ATP o fotofosforilación que puede ser:

acíclica o abierta

cíclica o cerrada

Síntesis de poder reductor NADPH

Fotolisis del agua



Fase oscura:

En el estroma. En ella se realiza la fijación de carbono

En esta fase, se va a utilizar la energía química obtenida en la fase luminosa, en reducir CO2, Nitratos y Sulfatos y asimilar los bioelementos C, H, y S, con el fin de sintetizar glúcidos, aminoácidos y otras sustancias.

Las plantas obtiene el CO2 del aire a través de los estomas de sus hojas. El proceso de reducción del carbono es cíclico y se conoce como Ciclo de Calvin., en honor de su descubridor M. Calvin.



Legorreta Sanchez Arely Malinaly